Climate Change Advisory Council Carbon Budgets Modelling Workshop 18 October 2022

Refining the "Paris Test" for Ireland's second Carbon Budgeting programme

Paul R Price DCU & CCAC Carbon Budgeting Fellow

DCU Supervisors: Prof. Barry McMullin and Dr. Aideen O'Dochartaigh

Rialtas na hÉireann

Government of Ireland

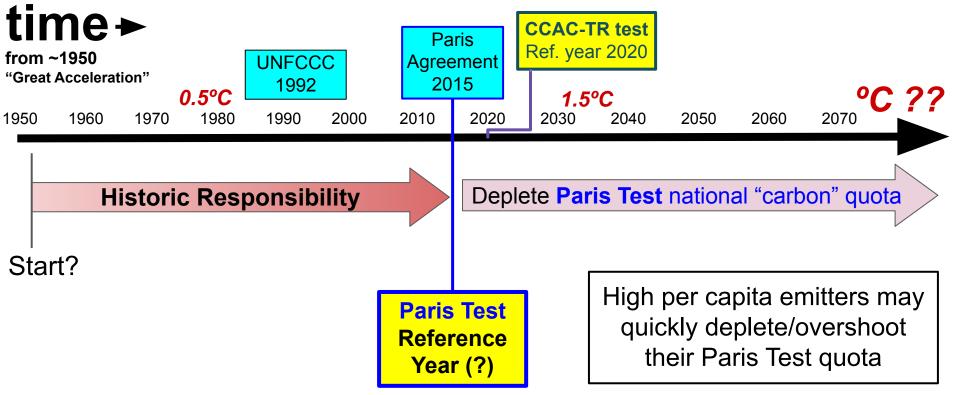
Funded by:

Why a **Paris Test** for climate action?

- Climate Act 2021 requires action 'consistent with' Paris Articles 2 & 4(1)
- <u>Without</u> a Paris Test there is no reasoned basis for claiming that our carbon budgeting is equitably aligned with achieving the Paris Agreement goal.
- But note: for any Paris Test, value judgements are *unavoidable*.
 - <u>Dooley et al. 2021</u>: Ethical choices behind quantifications of fair contributions under the Paris Agreement ⇒
 - 'Analysis may be rigorous, replicable and systematic, but it should also explicitly outline normative assumptions and values'

The Council's **2021 Carbon Budget Technical Report** includes a "**Paris Test**" ⇒ Ahead of other nations & expert climate advisory groups.

This research:


Clarify and refine the Council's 2021 **Paris Test**, to support future advisory analysis, political debate, & public accountability:

1. Clarify CCAC 2021 Paris Test choices

2. Refine CCAC Paris Test quantification.

Choices: Setting a Reference Year:

Separates prior historic responsibility from subsequent mitigation responsibility

1. Clarifying Paris Test <u>choices</u>: Summary *Findings*

- A test definition **framework** enables value judgement & quantification issues to be clearly understood for discussion and improvement.
- **2021 Technical Report:** some **PT** choices are implicit or unclear.
- **Reference Year choice** affects equity so justify definition & note effect.

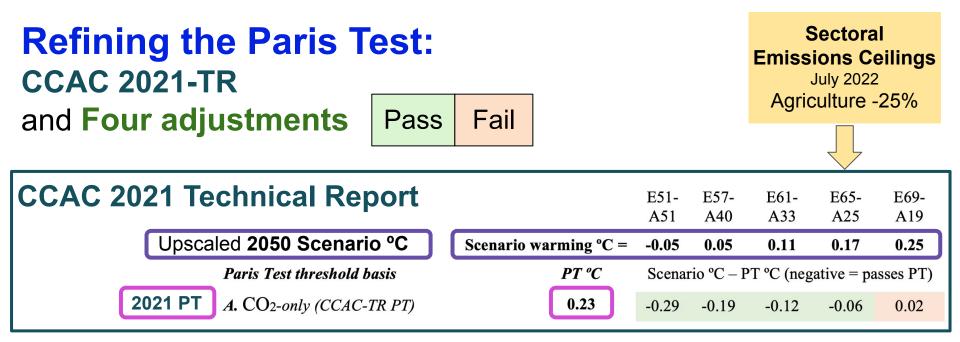
Recommendations

- Stating Paris Test choices more explicitly in future strengthens the reasoned basis to say Ireland's carbon budgets meet Paris commitments.
 - Increasing PT clarity enables analysis, debate, and accountability, and challenges others to show *their own* reasoned basis for a test.
- **Reference Year:** Do not allow any drift *forward* in time. + Compare to 2015.

Paris Test CCAC October 2021 Carbon Budget Technical Report

Five "core scenarios" $CO_2 + N_2O + CH_4$

Table 4-4 Summary: Additional Impact of Ireland's emissions from 2020 on Globa emperature in 2050


	Summary Table: Additional Impact of Ireland's emissions from 2 20 on Global Temperature in 2050								
		Unit	E51%-A51%	E57%-A40%	E61%-A33%	E65%-A25%	E69%-A19%		
	Net Change in Global Temperature in 2050 relative to 2020	x10 ^{-3 o} C	-0.04	0.03	0.07	0.11	0.15		
Upscaled 2050 Scenario °C	Upscaled to Global level Temperature change to 2050	°C	-0.05	0.04	0.11	0.16	0.24		
Paris Test global: 0.23°C	Remaining gap to global 1.5 degree goal (with confidence range)	°C	0.23 (0.14- 0.32)	0.23 (0.14- 0.32)	0.23 (0.14- 0.32)	0.23 (0.14- 0.32)	0.23 (0.14- 0.32)		
		[Pass	Pass	Pass	Pass	Fail		

CCAC finding: All scenarios pass the test comfortably, except E69-A19

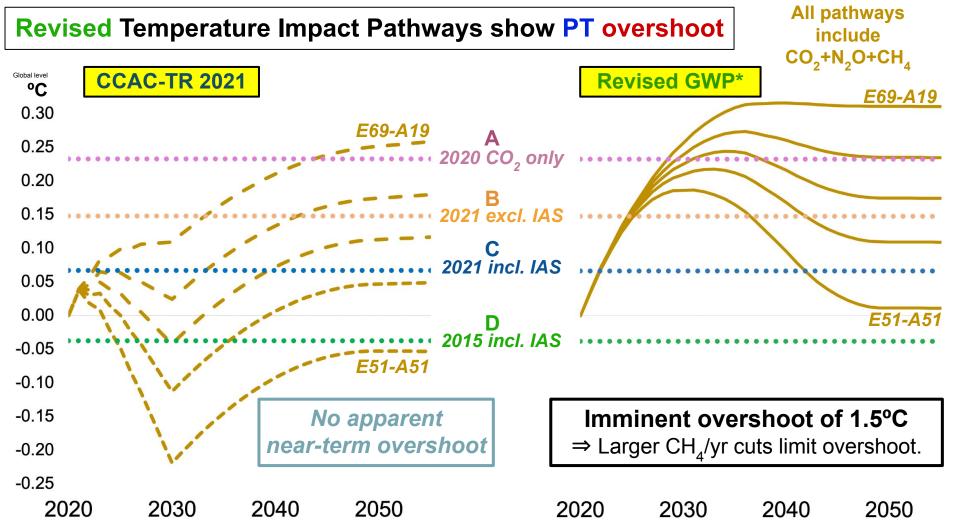
2. Refining the Council's 2021 Paris Test quantification

Four changes to the CCAC 2021 Technical Report quantification:

- A. Adjust GHG metric \Rightarrow more scenario warming + shows PT overshoot \circ Use published GWP* \Rightarrow revised g-value + 20-year CH₄ forcing time-lag.
- **B.** Align global PT to national GHG basis \Rightarrow N₂O+CH₄ warming is negative. \circ National scenarios use CO₂+N₂O+CH₄, so use same for global Paris Test.
- C. International Aviation & Shipping (IAS). Account: globally or nationally?
 IE has high IAS usage: so offer a scenario based on WAM+NetZero 2050.
- D. Reference year: Compare to 2015 (Paris Agreement). +Match global & national.
 Benchmark 2015 "latest defensible year" for CBDR-RC ⇒ McMullin et al. 2019.
 - + Minor adjustment of global basis to 2021, reduce quota by 2020 GHGs.

Four adjustments added one-by-one:

A. GWP* change CO ₂ -only (CCAC-TR PT)	0.23	-0.22	-0.12	-0.06	0.00	0.08
B. 2021: CO₂+N₂O+CH₄ rGCB*_2021	0.15	-0.14	-0.04	0.03	0.09	0.16
C. 2021 minus IAS rGCB*_2021 minus IAS	0.07	-0.06	0.04	0.11	0.17	0.24
D. 2015 minus IAS <i>rGCB*_2015 minus [IAS & 2015–2020]</i>	-0.04	0.05	0.15	0.21	0.27	0.35


2. Refining Paris Test quantification: Summary

Findings

- Only <u>one</u>, or <u>none</u>, of 2021 scenarios pass revised CCAC Paris Test Passing Paris Test is more difficult ⇒ smaller carbon budgets to 2050.
- **Methane mitigation is crucial** to limit overshoot & reduce reliance on carbon dioxide removal. (All assuming radical reduction in fossil fuel use.)

Recommendations

- Evenly balanced Energy & Agriculture mitigation best limits warming. Cutting CH_4 is far more effective in °C than cutting CO_2 or N_2O by same %.
- To limit overshoot of Paris Test threshold, need early/deep mitigation.
- Next budget cycle: Refine/state Paris Test first, then show options meeting it.
- Evaluate scenario °C warming early: using GWP* (or climate model) from GWP₁₀₀

Paul R Price DCU-ECRN October 2022

Bonus Slide:

Q: Should a "well below 2°C" GCB* PT also be assessed or used instead?

1. 50% chance of not exceeding 1.5 °C was used in the CCAC 2021 PT = 80% chance of not exceeding 1.75 °C = >95% chance of not exceeding 2.0 °C (as of 2022, see <u>Matthews & Wynes, 2022</u>)

⇒ This would seem to equate well with the Paris goal, whereas accepting a higher chance of 2°C warming reduces the chance of "well below 2°C"

- 2. IPCC scenarios for 1.5°C accept limited overshoot, with return by 2100.
 - Our global $CO_2 + N_2O + CH_4 CO_2we = peak warming \Rightarrow so accepts small overshoot.$
- 3. Higher estimated TCRE of 0.50°C per 1000 GtCO₂fe (Mengis and Matthews 2020)
 - 11% more warming for the same CO₂we emissions, therefore higher chance of exceeding temperature values.

A: Given the above, a Paris Test based on above a 50% chance of exceeding 1.5°C, provides a reasoned maximum threshold for "wb2°C".

Thank-you.

Questions?

Refining the "Paris Test" for Ireland's 2nd Carbon Budgeting programme

Paul R Price DCU & CCAC Carbon Budgeting Fellow DCU Supervisors: Prof. Barry McMullin and Dr. Aideen O'Dochartaigh

Video of this presentation: <u>https://youtu.be/wiQQQprSrCE</u> pdf doi: 10.5281/zenodo.7220026

Funded by:

